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ABSTRACT
Digital technology especially raised hopes to open up new possibilities to personalize learning. 
Although various schools have implemented approaches of technology-supported personalized 
learning, the impact on instructional quality remains unclear. As a common definition of the 
multilayered construct personalized learning is lacking, our study focuses on two theoretical 
dimensions of technology-supported personalized learning to investigate the impact on instructional 
quality. For this purpose, our study has analyzed data from a survey of N = 860 students (8th grade) 
from 31 Swiss schools with personalized learning concepts. Results show that student-centered 
teaching methods in the context of technology-supported personalized learning stimulate the 
cognitive activation of the students, and the supportive climate increases slightly with a higher 
degree of students’ voice and choice on the computer.

Introduction

Personalized learning as a student-centered approach is 
called for to better align instruction to students’ individual 
needs and prior experiences (Murphy et  al., 2016; Reigeluth 
et  al., 2017). This idea has existed for a long time and 
several educational endeavors have tried to implement it 
with different learning philosophies (e.g., behaviorist, cog-
nitivist and constructivist learning theories). However, the 
implementation of this idea remains a big challenge. 
Especially in the last 15 years, the approach of personalized 
learning has gained popularity, mainly in Anglo-American 
countries (e.g., Bray & McClaskey, 2015; Miliband, 2006; 
Pane et  al., 2017; Zhang et  al., 2020). Although neither 
student-centeredness nor personalized learning are new 
research topics, publications on research to personalized 
learning have increased significantly since 2008 according 
to a recent review of the literature (Shemshack & Spector, 
2020). Digital technology particularly raised hopes to open 
up new possibilities to personalize learning. Therefore, the 
approaches are at present often discussed in relation to 
digital technology. Various studies investigated the role of 
specific digital tools and systems to personalize learning 
(Gierl et  al., 2018; Lee et  al., 2018; McLoughlin & Lee, 2010; 
Zhang et  al., 2020). However, the impact of implemented 
approaches of technology-supported personalized learning 
on educational outcomes has been investigated rarely so far 
(Lee et  al., 2021; Shemshack & Spector, 2020; Zhang et  al., 

2020). For example, intelligent tutoring systems are one 
important stream of the existing research (Crow et  al., 2018; 
Kulik & Fletcher, 2016; Ma et  al., 2014). This kind of com-
puter programs provides individualized instruction based 
on computational algorithms or models without the inter-
vention of teachers. With regards to practice, many schools 
have implemented a whole-school approach of personalized 
learning, using multiple technological tools to tailor teaching 
and learning to the individual needs of students and to 
increase student choice, especially in Europe (Petko et  al., 
2017; Schmid & Petko, 2019). However, studies have so far 
rarely investigated the impact of technology-supported per-
sonalized learning as a whole-school approach on educa-
tional outcomes (Lee et  al., 2021; Shemshack & Spector, 
2020; Zhang et  al., 2020). Although many schools have 
changed their teaching practices, it is still unclear whether 
the general use of digital technology to support personalized 
learning settings have an effect on the quality of instruction.

One difficulty is associated with the operationalization 
of personalized learning as a complex and multilayered con-
cept. As the research literature shows, a wide variety of 
dimensions are subsumed under the concept, and the imple-
mentation in practice is rather heterogeneous (Keefe, 2007; 
Shemshack & Spector, 2020; Stebler et  al., 2018). To con-
strain the conceptual fuzziness, the present study analyses 
two dimensions of computer-supported personalized learn-
ing—student-centered teaching methods and students’ voice 
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and choice in technology-supported personalized learning. The 
aim of the study is to examine the impact of these two 
dimensions on the instructional quality as an important 
mediator of educational outcomes.

In the following, the theoretical background for this study 
will be presented. First, we present the approach of personalized 
learning and its relevance in the context of technology. Second, 
we provide an overview of the current research on the effects 
of technology-supported personalized learning on educational 
outcomes. Finally, we describe a widely used conceptualization 
of the construct of instructional quality in the German-speaking 
area and explain the effects of technology-supported personal-
ized learning on instructional quality.

Literature review and theoretical framework

Personalized learning and technology

Besides the call to tailor teaching to the individual needs 
and prior experiences (Murphy et  al., 2016; Reigeluth et  al., 
2017), students must be at the center and active (Bray & 
McClaskey, 2015; Sebba et  al., 2007). These are important 
preconditions for optimal outcomes of learning. Regarding 
the published research, the approach of personalized learning 
has increasingly gained more attention (Shemshack & 
Spector, 2020), and it is often built on the help of technology 
(Attwell, 2007; Bingham et al., 2018; Lee et al., 2018; Murphy 
et  al., 2016). Different English-speaking countries, such as 
the United States, United Kingdom, and Canada, have ini-
tiated educational reforms toward personalized learning 
(Basham et  al., 2016; Sebba et  al., 2007; Zhang et  al., 2020). 
In Europe, the term personalized learning is less established 
compared to the English-speaking countries. With a view 
to the school field, for example in Switzerland, several public 
and private schools have independently introduced forms 
of personalized learning, often supported by technology 
(Petko et  al., 2017; Schmid & Petko, 2019).

Despite this growing interest across the countries, current 
systematic research reviews on the implementation and on 
the definition of the term personalized learning show dif-
ferent emphases and demonstrate that a common operation-
alization of the approach is absent (Shemshack & Spector, 
2020; Zhang et  al., 2020). Nonetheless, a common overar-
ching idea behind all definitions can be found and can be 
described as follows: The implementations in practice show 
a shift toward a broad array of student-centered teaching 
methods that include higher degrees of student self-direction 
compared to traditional teacher-centered instruction. At the 
same time, appropriate teacher guidance is an important 
part of student-centered learning with regard to the effec-
tiveness (Drexler, 2010; Lazonder & Harmsen, 2016). Due 
to this shift, students have a more active role in personalized 
learning settings than in traditional learning settings, which 
gives students a say—students’ voice and choice—in learning 
(Bray & McClaskey, 2015; Jones & McLean, 2012; Miliband, 
2006; Mötteli et  al., 2021; Schmid & Petko, 2019; Watson 
& Watson, 2017). Within curricular guidelines, students’ 
voice and choice can relate to what, when, and how they 
learn. Further, students can co-determine the social 

organization and the assessment of the learning process. 
The active involvement of the students through their voice 
and choice can be considered as a key differentiator from 
other related concepts, such as individualization and differ-
entiation (Bray & McClaskey, 2015; DeMink-Carthew & 
Netcoh, 2019). The National Personalized Learning Scan of 
the United States shows that giving students more control 
of pacing content and learning activities is one of the biggest 
challenges in the transition toward personalized learning. 
This challenge is reflected in a strong reluctance to cede 
control to students (Gross et  al., 2018).

In the implementation of personalized learning settings, 
technology can be significantly supportive. Lee et  al. (2018) 
argue that to personalize instruction and to document the 
individual learning progress, technology is essential. Their 
study of the functions of technology in personalized learning 
showed that technology is currently used primarily for lesson 
planning and instruction (Lee et  al., 2018). In general, the 
organization and management of personalized learning set-
tings are becoming more complex than in traditional learn-
ing settings. Compared to traditional learning settings where 
teachers have for the most part given the same task to all 
students at the same time, the teaching methods in person-
alized learning settings are student-centered. This means 
students solve different tasks with different performance 
levels at different times of their own choosing, which is 
more demanding to organize and manage. However, by 
implementing technology, the increased complexity can be 
managed, for example, through a better overview of the 
individual tasks and the processing status. On the one hand, 
this overview helps the teacher to recognize individual needs 
of students for support at an early stage, despite the indi-
vidual assignment of tasks and processing status (Reigeluth, 
2017), and on the other hand, it helps the individual student 
to keep track of their individual tasks with different sub-
mission dates (Schmid et  al., 2022). Thus, technology can 
enable personalized learning settings by mastering the orga-
nization and management of personalized learning plans. 
With regard to students’ voice and choice, technology pro-
vides a greater range of information, especially due to the 
internet (e.g., Sebba et  al., 2007). This can help teachers to 
develop tasks with individual content choice on one hand 
and tasks with authentic problems on the other hand, which 
would not be possible in this form without technology. If 
students can learn with authentic problems or can choose 
the content within a task adapted to their individual inter-
ests, learning becomes more relevant, which has the poten-
tial to increase the learning outcome (Walkington & 
Bernacki, 2018). At the same time, this means that students 
must learn at school how to use the internet, for example, 
how to find the desired information on the internet.

The required prior knowledge in dealing with technology 
shows that, along with the advantages, there are also certain 
challenges to be considered. For example, a good infrastructure 
including sufficient internet bandwidth and a school-wide IT 
concept are important preconditions (Bingham et  al., 2018). 
However, a high standard of infrastructure does not automat-
ically lead to a more intensive or effective integration of tech-
nology (Niederhauser et  al., 2018). Different studies show that 
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teachers’ individual beliefs about the use of technology play a 
critical role in whether they regularly use technology in the 
classroom and in how effectively they use it (Ertmer et  al., 
2012; Hermans et al., 2008; Petko, 2012). Finally, students need 
specific introductions to each digital tool and assistance in 
completing tasks on the computer (Schmid et  al., 2022).

Effects of technology-supported personalized learning 
approaches on educational outcomes

While positive effects of technology-supported personalized 
learning approaches on educational outcomes have been often 
proposed from a theoretical perspective, empirical evidence 
is still in its infancy. Shemshack and Spector (2020) described 
it as challenging to find “a sufficient number of published 
cases that report effect sizes” to conduct a meta-analysis on 
personalized learning environments that are among other 
factors “effective and efficient in supporting and promoting 
desired learning outcomes” (p. 2). Lee et  al. (2021) support 
this evaluation with the conclusion that scarce studies have 
investigated the practice of personalized learning in relation 
with academic achievement. However, a research review on 
the implementation of personalized learning showed that 50 
out of 71 studies investigated a specific tool or digital system 
to enable personalized learning (Zhang et  al., 2020). The 
majority of these studies were associated with positive findings 
among others in terms of academic outcome and engagement 
(e.g., Arroyo et  al., 2014; Walkington, 2013). Meta-analyses 
of intelligent tutoring systems (ITS) indicate positive effects 
on student outcomes when compared to non-individualized 
forms of teacher-guided instruction or non-ITS educational 
software (Kulik & Fletcher, 2016; Ma et  al., 2014). However, 
the development costs of ITS are immense and only few 
systems are available for highly specific curricular topics. A 
recent systematic review of the conceptual trends of 
technology-supported personalized learning corroborates a 
positive trend on learning outcomes (Van Schoors et  al., 
2021). Further, the research reviews pointed out that only a 
few studies evaluated the practice of technology-supported 
personalized learning as a comprehensive school-wide 
approach and its effect on educational outcomes (Van Schoors 
et  al., 2021; Zhang et  al., 2020).

Two national large-scale studies of the United Kingdom 
investigated practices of personalized learning in the context 
of the educational strategy. Sebba and his colleagues (2007) 
analyzed how schools implemented personalized learning 
initiated by the Five Year Strategy for Children and Learners 
in 2004 (Department for Education and Skills and  Great 
Britain (DfES),), 2004). About half of the schools used tech-
nology for assessment, but otherwise the interplay between 
educational effectiveness and personalized learning with 
technology was not explored in detail (Sebba et  al., 2007). 
The other study analyzed questionnaires of 67 schools and 
conducted case studies of 24 schools (Underwood et  al., 
2007). According to the case studies, students used com-
puters for collaborative learning and online self-assessment, 
and teachers used computers for computer-based instruction. 
However, the data from the questionnaires indicated no 

statistically significant correlation between high-performing 
secondary schools and a high degree of personalization 
according to the agenda of the schools. Further, a recently 
published study of the United States investigated personal-
ized learning approaches and technology in relation to stu-
dents’ performance (Lee et  al., 2021). Survey data of 72 
learner-centered schools and standardized test results were 
analyzed. Teachers in high-performing schools used tech-
nology for more functions and implemented personalized 
learning more comprehensively compared to low-performing 
schools (Lee et  al., 2021). To strengthen this finding, it 
would be necessary to control for context factors, as for 
example IT infrastructure, or the rate of free and reduced 
lunches (FRL rate), which was higher in the 
low-performing group.

When looking at the effectiveness of student-centered 
approaches in general, two meta-analyses studies showed 
that student-centered approaches are associated with an 
increase in cognitive and in emotional-social aspects of 
learning in comparison to traditional approaches 
(Cornelius-White, 2007; Freeman et  al., 2014). Other review 
studies questioned the effectiveness of minimally guided 
instruction approaches (Hattie, 2009; Sweller et  al., 2007). 
At present, there is a distinct shift toward student-centered 
teaching methods supported by technology that offer an 
appropriate combination of student self-direction and teacher 
support (Lazonder & Harmsen, 2016; Petko et  al., 2017; 
Stebler et  al., 2018).

Overall, limited empirical research exists, especially for 
technology-supported personalized learning analyzed as a 
whole-school approach. The existing body of research is 
partly inconsistent, which is probably due to differences in 
teaching and learning quality. However, there is preliminary 
evidence that technology-supported personalized learning—
implemented in a qualitatively satisfying way—has a mod-
erate positive effect on educational outcomes (Lee et  al., 
2021; Van Schoors et  al., 2021; Zhang et  al., 2020). Since 
the quality of instruction is crucial with regard to student 
outcomes (Baumert et  al., 2010; Creemers & Kyriakides, 
2008; Decristan et  al., 2015; Fauth et  al., 2014; Hattie, 2009; 
Lipowsky et  al., 2009), it seems beneficial to analyze the 
impact of technology-supported personalized learning on 
instructional quality.

Effects of technology-supported personalized learning 
approaches on instructional quality

There exist several frameworks on instructional quality with 
large overlaps (e.g., Pianta & Hamre, 2009; Praetorius et  al., 
2018; Roloff et  al., 2020; Seidel & Shavelson, 2007). In 
Europe, especially in the German-speaking countries, a 
three-component framework has been established. The 
so-called three basic dimensions, namely cognitive activation, 
supportive climate, and classroom management, are often 
used in empirical analysis to define and operationalize the 
quality of instruction (e.g., Fauth et  al., 2014; Klieme et  al., 
2001; Lipowsky et  al., 2009). Although the three dimensions 
were originally identified in mathematics education with 
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traditional learning settings based on the large-scale study 
TIMSS 1995 (Third International Mathematics and Science 
Study), the conceptualization of the dimensions in terms of 
content is largely subject-independent and not related to 
the method of instruction.

Despite ample research on the three dimensions of 
instructional quality and their impact on student outcomes, 
empirical research on the relationship between 
technology-supported personalized learning approaches and 
instructional quality is absent. When considering the 
research on the three generic dimensions of instructional 
quality, the following impact of technology-supported per-
sonalized learning on the three dimensions can be assumed:

The first dimension, cognitive activation, involves provid-
ing tasks and questions that require students to activate 
their prior knowledge and use it to access new content. In 
cognitively challenging instruction, the teacher asks students, 
for example, to elaborate on their way of thinking or to 
relate statements in discussions. Enhancing a deep under-
standing of the concepts is a continual focus (e.g., Baumert 
et  al., 2010; Fauth et  al., 2014; Klieme et  al., 2009; Lipowsky 
et  al., 2009; Praetorius et  al., 2018). It can be assumed that 
technology-supported personalized learning enhances cog-
nitive activation, since the individual levels of each student, 
such as prior knowledge or interests, can be better taken 
into account than in traditional learning settings (e.g., 
Walkington, 2013). This allows deep learning to occur at 
different levels, as we have described in the first section of 
this literature review.

To achieve the goal of deep understanding, students need 
a supportive environment in addition to cognitively chal-
lenging learning activities. This second dimension of sup-
portive climate covers appropriate teacher support for 
comprehension problems of students and a high level of 
teacher sensitivity regarding the individual needs of students. 
A positive teacher–student interaction enables the creation 
of a supportive environment in which students can feel safe 
(e.g., Fauth et  al., 2014; Lipowsky et  al., 2009; Praetorius 
et al., 2018). It can be assumed that teacher support increases 
in computer-supported personalized learning. By opening 
up instruction with transfer of control to students, digital 
tools are often implemented to manage the personalized 
learning plans. Thereby the individual processing status of 
each student and their problems with tasks becomes visible 
at an early stage (e.g., Reigeluth, 2017). Due to this tech-
nological support, teachers obtain more indications on diag-
nostics, and thus students receive the individual teacher 
support that they need during the self-directed learning 
phases. Further, some students will need more help and 
guidance to be able to solve their tasks individually on the 
computer than in traditional learning settings (e.g., Lazonder 
& Harmsen, 2016).

The third dimension represents the classroom manage-
ment. The focus here is on managing the lesson effectively 
to ensure that as few disruptions as possible occur. Teachers 
must ensure that students are on-task, and thus all students 
use the available time of class for learning. An effective 
use of the teaching time requires a high clarity of rules, 
monitoring students’ behavior, and enforcing the rules when 

necessary (e.g., Emmer & Stough, 2001; Kounin, 1970; 
Pianta & Hamre, 2009). Although good classroom manage-
ment is crucial for students’ learning gains, technology- 
supported personalized learning, for example, does not 
facilitate the clarity of rules. Since the complexity of per-
sonalized learning settings supported with students’ 
co-determination tends to increase, but so does the poten-
tial to use the learning time effectively, no positive rein-
forcement of technology-supported personalized learning 
on classroom management is assumed.

These three dimensions of instructional quality represent 
a parsimonious but relatively comprehensive systematization 
of the teaching and learning processes that can be observed 
in the classroom (Klieme, 2019; Kunter & Ewald, 2016). 
However, empirical clarification is needed to verify the 
assumptions of whether student-centered teaching methods 
and students’ voice and choice in technology-supported per-
sonalized learning correlate positively with the quality of 
instruction.

Research questions

To address the dearth of research as presented in the pre-
vious section, the present study investigated implemented 
technology-supported approaches of personalized learning 
combined with instructional quality (i.e., the three subdi-
mensions of cognitive activation, supportive climate, and 
classroom management). The purpose of the study is to 
consider the dimensions student-centered teaching methods 
in technology-supported personalized learning (TEME) and 
students’ voice and choice in technology supported personalized 
learning (VOCH) and whether these dimensions have a 
positive impact on the instructional quality operationalized 
by the three subdimensions.

Taking account of the current state of the research so 
far, which we have described in the previous section, we 
will investigate the following three research questions:

(RQ1) Are student-centered teaching methods in 
technology-supported personalized learning (TEME) and students’ 
voice and choice in technology-supported personalized learning 
(VOCH) statistically significant positive predictors of cognitive 
activation, (RQ2) and of supportive climate based on students’ 
assessments?

(RQ3) Do student-centered teaching methods in 
technology-supported personalized learning (TEME) and students’ 
voice and choice in technology-supported personalized learning 
(VOCH) influence classroom management based on students’ 
assessments?

The proposed theoretical assumptions are visualized in 
Figure 1.

Methodology

Contextualization of the study

A growing number of Swiss schools have been changing 
their culture of teaching and learning by implementing a 
form of personalized learning. The perLen (“Personalized 
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Learning Concepts in Heterogeneous Learning Groups”) 
research project investigated such schools in the 
German-speaking part of Switzerland over three years 
(2013–2015) (Stebler et  al., 2018). Our present study formed 
part of this project.

Although the implementation of personalized learning 
inevitably differs between the 31 participating 
lower-secondary schools, there is sufficient evidence for 
common characteristics. All schools have developed their 
teaching in the following areas: student-centered teaching 
methods, self-directed learning, and adaptive learner sup-
port. For this purpose, they have rescheduled their weekly 
lesson plans and integrated time slots for autonomous stu-
dent learning. During these self-directed learning phases, 
students follow a personal learning plan, whereby they 
typically have more choice and voice concerning what, how, 
and when they learn than in traditional classroom settings. 
As a consequence, the role of the teachers primarily consists 
in supporting. Many students have one-on-one meetings 
with their teacher to discuss difficulties and the general 
workflow of the self-directed learning phases. Finally, all 
schools developed their teaching culture in a bottom-up 
initiative, mostly with the aim of better catering to hetero-
geneous groups of students.

Regarding the use of digital technology, computers and 
sometimes laptops with internet access are available in the 
open learning space. Although the frequency and method 
of implementation varies widely, students use computers 
for individual learning tasks, especially during the 
self-directed learning phases. Due to the limited infrastruc-
ture, teachers sometimes specify for which assignments the 
computer may be used. In addition to word processing and 
presentation programs, subject-specific learning software is 
also used, which is developed together with newer manda-
tory teaching materials, e.g., in mathematics. Particularly 
in vocational education, a specific online platform named 
yousty is perceived as a great added value. Adaptive tech-
nologies, on the other hand, are hardly implemented yet. 
However, many schools employ a learning platform to 
administer personalized learning plans. A detailed descrip-
tion on the integration of the different technological tools 
is provided in the multiple case studies from Schmid 
et  al. (2022).

Ethical considerations

The data collection of the present study has been conducted 
following the ethical requirements established by the Swiss 
Academies of Arts and Sciences. Consequently, all data anal-
yses were conducted based on anonymous data.

Sample

This cross-sectional study is based on a student survey in 
schools that have introduced personalized learning concepts. 
The analysis relates to the N = 31 lower-secondary schools 
with N = 1017 8th-grade students (486 female, 531 male stu-
dents) from 78 classes. Only students who reported using 
technology in class at least sometimes were asked about 
their user behavior in more detail. Therefore, we excluded 
students with non-answers. The final data set consisted of 
N = 860 students. 48.7% (419) were female students. The 
median of the students’ year of age was fourteen, with an 
interquartile range of six years.

All 31 schools were recruited by an open call for schools 
with personalized learning concepts or had been invited 
because of recommendations from Swiss municipal and can-
tonal education departments. Participation was voluntary. 
The sample cannot be considered representative; however, 
all schools have been developing their teaching in the direc-
tion of personalization. A more detailed description of the 
common characteristics of personalized learning that become 
manifest in these schools is available from Schmid and 
Petko (2019).

Data collection and study measures

To answer our research questions, we surveyed students to 
gain direct insight into how the technology-supported per-
sonalized learning units are implemented. The self-estimated 
frequency of personalized learning activities supported by 
technology, together with the perceived instructional quality 
based on the three subdimensions were assessed via stan-
dardized online questionnaires, which took place during 
regular lessons. This student questionnaire was part of the 
survey in 2013 of the perLen project and had been devised 
on the basis of existing instruments.

Instructional quality was assessed with ten items (IQUAL) 
and consisted of three subdimensions: classroom manage-
ment (3 items, e.g., “In class, everyone knows the rules that 
must be followed.”), cognitive activation (3 items, e.g., “My 
teachers want me to be able to explain my answers.”), and 
supportive climate (4 items, e.g., “My teachers know what 
I’m already good at.”). The short scales were developed on 
the basis of the inventory of Bos et  al. (2011) and Fauth 
et al. (2014). All items were assessed on a 4-point Likert-type 
scale, ranging from 1 (strongly disagree) to 4 (strongly agree). 
All questions used for instructional quality are documented 
in the Appendix.

Regarding the validity of instructional quality, Fauth et  al. 
(2014) assessed the factorial validity and the predictive 
power of the student ratings of the instructional quality. 

Figure 1. H ypothesized structural equation model.
Note. TEME = Student-centered teaching methods in technology-supported 
personalized learning, VOCH = Students’ voice and choice in technology-supported 
personalized learning
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The results provided evidence for a valid three-dimensional 
framework of instructional quality. In addition to Fauth 
et  al. (2014), Praetorius et  al. (2018) reported that various 
studies could confirm the factorial validity of the three 
subscales on teaching quality.

The construction of the latent independent variables 
student-centered teaching methods in technology-supported 
personalized learning (TEME, 3 items, e.g., “I work with my 
weekly or daily learning plan on the computer.”) and stu-
dents’ voice and choice in technology-supported personalized 
learning (VOCH, 3 items, e.g., “I decide the procedure on 
the computer myself.”) was grounded in theory and is based 
on Schmid and Petko (2019). All items were assessed on a 
4-point Likert-type scale (almost daily, 1 to 2 times per 
week, 1 to 2 times per month, almost never). All questions 
used for technology-supported personalized learning are 
documented in the Appendix.

Data analysis

To answer our research questions, we employed a structural 
equation modeling approach with latent variables (Kline, 
2015; Schreiber et  al., 2006). Before modeling the structural 
equation model, we tested the measurement model instruc-
tional quality besides the two theory-based factors of per-
sonalized learning with confirmatory factor analysis and 
tested their reliability estimates with McDonald’s omega (ω) 
(Hayes & Coutts, 2020). To evaluate the fit of the confir-
matory factor models and the structural equation model, 
we examined the typical goodness-of-fit indices. As typical 
indices, we report χ2 values, the comparative fit index (CFI) 
and Tucker–Lewis index (TLI) with minimum cutoff criteria 
of ≥ .90 or .95, the root mean square error of approximation 
(RMSEA) ≤ .05 or .08, and the standardized root mean 
square residual (SRMR) ≤ .08 or .06 (Hu & Bentler, 1999).

The measurements of the structural equation model were 
estimated by using the robust maximum likelihood (MLR) 
method to consider possible non-normality problems, and 
missing patterns were treated with a full information max-
imum likelihood (FIML) approach. Although there might 
have been little variance between the schools, it was not 
possible to apply multilevel modeling. The sample consisted 
of too few schools relative to the number of parameters. 
However, the intraclass correlation coefficients of the depen-
dent variables were relatively low (ρ = 0.04–0.28), and thus 
the multilevel approach was not necessarily required. All 
analyses were carried out with R version 4.0.2 and the pack-
ages lavaan, lavaan.survey, and psych (Beaujean, 2014; 
Revelle, 2017; Rosseel, 2012).

Results

Descriptive analysis

The internal consistencies, means, standard deviations, and 
intercorrelations of the independent key variables (TEME 
and VOCH) and instructional quality including all three 
subdimensions (IQUAL) are shown in Table 1. The 

reliabilities of the presented scales were acceptable to good 
with McDonald’s ω from .68 for student-centered teaching 
methods in computer-supported personalized learning to 
.82 for students’ voice and choice in computer-supported 
personalized learning. On average, students reported using 
digital technology monthly for learning plans or project 
work (TEME, M = 2.10, SD = 0.77). On a nearly weekly basis 
on average, students stated that they can determine their 
procedure, time management, and learning content on the 
computer (VOCH, M = 2.87, SD = 0.81). Further, students 
agree to receive learning support in completing demanding 
tasks and to adhere the rules in class (IQUAL, M = 3.27, 
SD = 0.35). All intercorrelations of the variables were positive 
and statistically significant.

First, we examined the two factors of personalized learn-
ing, namely student-centered teaching methods in 
computer-supported personalized learning (TEME) and 
students’ voice and choice in computer-supported person-
alized learning (VOCH) as latent and correlated factors by 
a confirmatory factor analysis. The results showed a very 
good fit to the data (Chi2(7) = 26.656, CFI = .98, TLI = 
.96, RMSEA = .057, SRMR = .028). Thus, this two-factor 
model represented the data well.

In a second step, we examined instructional quality mod-
eled by three latent factors: classroom management, cogni-
tive activation, and supportive climate. The confirmatory 
factor analysis confirmed the measure model with good 
fit values whereby no modifications were needed (Chi2(32) 
= 61.483, CFI = .98, TLI = .97, RMSEA = .03, SRMR = 
.03). The subdimensions of cognitive activation (3 items, 
McDonald’s ω = .64) and supportive climate (4 items, 
McDonald’s ω = .72) showed acceptable reliabilities. 
However, the reliability of the classroom management sub-
scale, operationalized by three items, was not sufficient 
(McDonald’s ω < .6). To improve the reliability by a dele-
tion of an item was not possible. Nevertheless, classroom 
management is an essential aspect of instructional quality 
for crafting validity, as it establishes the internal structure 
of the theoretical construct (Fauth et  al., 2014). Based on 
the evidence, and to better understand the influences on 
instructional quality, we have analyzed the three subdi-
mensions in the structural equation model as latent factors 
in a differentiated way. However, the results of the class-
room management subdimension must be interpreted with 
caution.

Structural equation modeling

To examine our proposed theoretical assumptions presented 
in Figure 1—the impact of the two important aspects of 
computer-supported personalized learning TEME and VOCH 
on the three sub-dimensions of instructional quality—we 
specified a structural equation model with the previous 
tested measurement models (see previous section). The 
model considered TEME and VOCH as correlated predictors 
of the subdimensions of instructional quality as dependent 
variables (see Figure 2). The structural equation model 
exhibited a good fit to the data and no modification indices 
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were needed (Chi2(91) = 154.896, CFI = .96, TLI = .95, 
RMSEA = .03, SRMR = .03).

In regard to the structural equation model, both factors 
of technology-supported personalized learning had a statis-
tically significant impact on one subdimension of instruc-
tional quality (see Figure 2). VOCH had a statistically 
significant, though moderate, positive effect on the support-
ive climate (β = .16, SE = 0.03, p < 0.01) and did not cor-
relate with the other subdimensions. TEME was a positive 
predictor of students’ cognitive activation (β = .16, SE = 
0.03, p < 0.05). The impact of TEME on the other subdi-
mensions of instructional quality was close to zero and not 
statistically significant. The regression coefficient of VOCH 
on supportive climate had a higher level of significance than 
TEME on cognitive activation. All subdimensions of instruc-
tional quality were highly statistically significantly and pos-
itively correlated. At the same time, the relation between 
the two aspects of technology-supported personalized learn-
ing TEME and VOCH was strongly positive and statistically 
significant (β = .51 SE = 0.03, p < 0.001).

Discussion

Technology-supported personalized learning as a 
whole-school approach has been often proposed as beneficial 
for educational outcomes from a theoretical perspective; 
however, empirical evidence is still in its infancy (Lee et  al., 
2021; Shemshack & Spector, 2020; Zhang et  al., 2020). Due 
to the need for more evidence in this area of empirical 
research, our study looked at the correlation between 
technology-supported personalized learning and the quality 
of instruction perceived by the students based on three 
subdimensions. To operationalize the multilayered construct 

of technology-supported personalized learning, we have 
focused on two dimensions, student-centered teaching meth-
ods and students’ voice and choice in technology-supported 
personalized learning.

The analyses have shown that both dimensions influence 
statistically significantly positive one subdimension of 
instructional quality; student-centered teaching methods in 
technology-supported personalized learning stimulate the 
cognitive activation of the students in tendency (B = .16, 
p ≤ 0.05), and the supportive climate increases slightly with 
a higher degree of students’ voice and choice on the com-
puter (B = .16, p ≤ 0.01). However, both effect sizes are 
moderate. All other effects of technology-supported person-
alized learning on the sub-dimensions of instructional qual-
ity are negligible and do not reveal significance. In contrast, 
the two dimensions of technology-supported personalized 
learning are strongly correlated (B = .62, p ≤ 0.001); 
student-centered teaching methods are therefore closely 
linked to students’ voice and choice in technology-supported 
personalized learning, and vice versa.

Regarding our third research question, technology-supported 
personalized learning, as we proposed, does not lead to 
perceived higher quality of classroom management (RQ3). 
This seems to be conclusive, as the teacher may need to 
demand the desired behavior of the students in 
technology-supported personalized learning settings as well 
as in traditional forms of teaching to ensure an effective 
use of learning time (Klieme, 2019; Kounin, 1970). The 
complexity of personalized learning settings supported with 
students’ co-determination even tends to increase, especially 
during the self-directed learning phases. Thus, the classroom 
management becomes more demanding, although the 
computer-supported personalized learning favors an effective 
learning time (Gross et  al., 2018; Lee et  al., 2021; 
Postholm, 2013).

When looking at cognitive activation, we expected an 
increase, which is partly supported by our data (RQ1). With 
student-centered teaching methods supported by technology, 
teachers tend to succeed in assigning cognitively challenging 
tasks that stimulate each student in deeper thinking and 
understanding (B = .16, p ≤ 0.5). This result is in line with 
existing research that shows student-centered learning envi-
ronments can foster cognitive aspects in learning, provided 
adequate teacher guidance (Freeman et  al., 2014; Lazonder 
& Harmsen, 2016). Further, the integration of digital tech-
nology can help to provide individual challenging tasks 
(Reigeluth, 2017). Previous findings of international studies 
have shown that students use digital technology more fre-
quently in student-centered learning environments com-
pared to conventional learning settings (OECD, 2015; 

Table 1. I nternal consistencies, means, standard deviations, and intercorrelations of the independent key variables and instructional quality.

Variable McDonald’s ω Mean (SD) 1 2 3

1 TEME .68 2.10 (0.77) –
2 VOCH .82 2.87 (0.81) .38*** –
3 IQUAL .76 3.27 (0.35) .13*** .14*** –

Note. N = 860. Reported coefficients are product-moment correlations; *** p ≤ .001.
TEME = Student-centered teaching methods in technology-supported personalized learning, 1 = (almost) never – 4 = (almost) every day; VOCH = Students’ voice 

and choice in technology-supported personalized learning; 1 = (almost) never – 4 = (almost) every day; IQUAL = Instructional quality; 1 = totally disagree – 
4 = totally agree.

Figure 2. S tructural equation model describing TEME and VOCH as predictors 
of the three subscales of instructional quality.
Note. N = 860; fit values: χ2(91) = 154.896, CFI = .96, TLI = .95, RMSEA = .03, 
SRMR = .03; *** p ≤ .001. TEME = Student-centered teaching methods in 
technology-supported personalized learning, VOCH = Students’ voice and choice 
in technology-supported personalized learning.
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Schmid & Petko, 2019; Tondeur et  al., 2017). However, it 
is not the frequency of technology use that is decisive but 
a qualitative way of implementation, which these data con-
firm with regard to the mere monthly use of technology 
in student-centered learning environments (TEME, M = 2.10, 
SD = 0.77). Hence, qualitative integration of technology 
seems to succeed on average in student-centered personal-
ized learning settings, at least in this sample. Contrary to 
our assumption, students’ voice and choice on the computer 
does not have a statistically significant impact on cognitive 
activation. A possible explanation could be that students’ 
co-determination has a positive effect mainly on motiva-
tional aspects (Garn & Jolly, 2014; Walkington & Bernacki, 
2018) and thus only an indirect influence on cognitive 
activation. Furthermore, the study does not analyze in 
which way students’ voice and choice on the computer is 
made possible, nor whether it takes place on a very small 
scale, as is partly shown in studies on personalized learning 
(Gross et  al., 2018; Schmid et  al., 2022).

When it comes to supportive climate (RQ2), only stu-
dents’ voice and choice has a statistically significantly pos-
itive impact with small effect size (B = .16, p ≤ 0.01). If 
teachers give the students more freedom to determine the 
what, when, and how of their technology-supported learning 
within the curricular requirements, students experience more 
learning support and a better assessment of their learning 
level by the teachers. This indicates an improved skill sup-
port but also a better learning support on a social-emotional 
level that can lead to better student outcomes 
(Cornelius-White, 2007; Freeman et  al., 2014). However, 
contradictory to our second assumption, student-centered 
teaching methods supported by technology have no statis-
tically significant effect on the supportive climate. This is 
a surprising result, but it could be related to the low fre-
quency of student-centered teaching methods supported by 
technology as it is shown in the descriptive analysis (TEME, 
M = 2.10, SD = 0.77). Thus, it could be assumed that the use 
of technology in student-centered learning environments 
needs to exceed a certain threshold in order to produce 
measurable and statistically significant effects. For example, 
findings of international studies show in tendency higher 
effects on student skills in countries that are characterized 
by a high extent of technology use in class (Bos et  al., 2014; 
Eickelmann et  al., 2014).

In addition to the presented findings, certain limita-
tions of the study should be mentioned. First, the inde-
pendent variables of technology-supported personalized 
learning (TEME, VOCH) and the three dependent vari-
ables of instructional quality are based on student ques-
tionnaires and thus purely measured by self-reports, 
which is a method often criticized (Chan, 2009). However, 
a research and literature review based on studies of 
50 years has shown that students’ ratings of instructional 
quality can be applied reliably and validly in primary and 
higher education (Benton & Cashin, 2014; Fauth et  al., 
2014). The McDonald’s Omega coefficients of the scales 
used confirm this with good values, except for the dimen-
sion of classroom management. Consequently, the results 
focusing on this subdimension (RQ3) are limited in their 

explanatory power. The reliabilities of cognitive activation 
(McDonald’s ω = .64) and supportive climate (McDonald’s 
ω = .72) could potentially be even improved by including 
more items in the short scales. This was not possible in 
the present study due to the comprehensive online-survey. 
The merely acceptable reliability of the student-centered 
teaching method might be explained by the fact that the 
implementations vary across schools and therefore stu-
dents evaluate the questions differently (TEME, McDonald’s 
ω = .68). However, this always has to be taken into 
account when interpreting the results, especially in explor-
ative studies. For the purpose of gaining insights into the 
instructional processes and quality of technology imple-
mentation that contribute statistically significantly to the 
interplay between technology-supported personalized 
learning and instructional quality, however, future research 
should seek to triangulate students’ self-reports with video 
analysis rated by neutral observers for more detailed anal-
ysis (Pianta & Hamre, 2009).

Another point to consider is that our cross-sectional 
study lacks the data on standardized performance necessary 
for examining the development of student outcomes being 
impacted by technology-supported personalized learning 
approaches. However, the instructional quality is considered 
a pivotal and modifiable factor influencing student outcomes 
(Hattie, 2009). Thus, the examination of the instructional 
quality in a cross-sectional design constitutes a first step. 
In a second step, further longitudinal research studies should 
include performance tests and a larger sample to justice the 
multilevel structure that could contribute to a better under-
standing of the impact of technology-supported personalized 
learning on student outcomes.

Finally, it should be noted that the sample represents 
only a portion of innovative schools in Switzerland with 
their own understandings of technology-supported person-
alized learning, and the results are strongly influenced by 
the specific national education system.

Keeping these limitations in mind, the results of our 
study extend the current state of research that includes very 
limited studies examining technology-supported personalized 
learning in relation to instructional quality and student 
outcomes (Lee et  al., 2021; Shemshack & Spector, 2020; 
Zhang et  al., 2020). The few empirical studies that exist 
represent almost exclusively the English-speaking areas 
(Bingham et  al., 2018; Gross et  al., 2018; Underwood et  al., 
2007; Zhang et  al., 2020). Thus, this exploratory study from 
Switzerland complements the fragmentary body of previous 
research by providing a first insight into the relationship 
between technology-supported personalized learning and 
instructional quality in the German-speaking context. 
Further, this explorative study takes up the challenge of 
examining the multidimensional approach personalized learn-
ing with no general accepted definition and sheds light on 
two dimensions of technology-supported personalized learn-
ing as a whole-school approach: (1) student-centered teach-
ing methods and (2) students’ voice and choice. In this way, 
the present study contributes to the existing body of research 
by adding further empirical findings of clearly defined 
dimensions of technology-supported personalized learning 
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as a whole-school approach to the initially pre-dominantly 
theoretical discourse (Attwell, 2007; Bray & McClaskey, 2015; 
Keefe, 2007).

Conclusion

The schools of our sample indicate that student-centered 
teaching methods and students’ voice and choice in 
technology-supported personalized learning have the 
potential to improve two dimensions of the instructional 
quality. Implementing student-centered teaching methods 
supported by technology in class can help to cognitively 
activate students. Further, if the teacher gives the students 
the freedom to co-determine the content, the procedure, 
and the temporal aspects of their learning processes sup-
ported by technology, the students might feel better sup-
ported individually, which can foster their learning 
motivation. The emergency remote teaching during the 
pandemic also clearly showed how important it is for the 
students to feel well supported. Current findings on school 
lockdowns indicate that certain students encountered insuf-
ficient learning support by the teachers (Kurtz, 2020). In 
particular, students with fewer self-regulation skills emerged 
from the pandemic with a loss of learning (Blaskó et  al., 
2021; Maldonado & De Witte, 2022). Therefore, it is 
important to build up the necessary self-regulation skills 
as well as digital skills in technology-supported personal-
ized learning. In addition, the results of this study, such 
as the rather low frequency of student-centered teaching 
methods supported by technology, need to be followed up, 
especially in light of the fact that media and information 
technology have been given greater importance by the new 
curricula for primary and secondary education in 
Switzerland.
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Appendix

Survey Results From Student Questionnaires

Table A1. S tudent-centered teaching methods in computer-supported personalized learning [TEME] based on Schmid and Petko (2019).

How often are you doing the following classroom activities on the computer? Median Mean SD

I work in the learning atelier on the computer. 2 2.32 1.05
I work on the computer with my weekly schedule, study plan, or daily schedule. 2 2.00 1.01
I work with tasks from a workshop on the computer. 2 1.98 0.93

Notes. N = 860; SD = standard deviation; scale: 1 = (almost) never, 2 = about once a month, 3 = once or twice a week, 4 = (almost) every day; McDonald’s  
ω = .68.

Table A2. S tudents’ voice and choice in computer-supported personalized learning [VOCH] based on Schmid and Petko (2019).

How often are you doing the following classroom activities on the computer? Median Mean SD

I can decide how to proceed when learning on the computer. 3 2.97 0.91
I can manage my own time when learning on the computer. 3 2.91 0.95
I can decide for myself what I learn on the computer. 3 2.71 1.00

Notes. N = 860; SD = standard deviation; scale: 1 = (almost) never, 2 = about once a month, 3 = once or twice a week, 4 = (almost) every day; McDonald’s  
ω = .82.

Table A3. I nstructional quality [Iqual] adopted from Bos et  al. (2011) and Fauth et  al. (2014).

Median Mean SD

Classroom management
In class, everyone knows the rules that must be followed. 4 3.57 0.57
In class, it is clear what students are allowed to do and what students are not allowed to do. 4 3.53 0.67
In class, students fritter away a lot of study time. 3 2.72 0.69
Cognitive activation
My teachers want me to be able to explain my answers. 3 3.16 0.73
My teachers give us tasks that seem to be difficult at a first glance. 3 3.32 0.65
My teachers give us tasks that I have to think about very thoroughly. 3 3.16 0.7
Supportive climate
My teachers take time to explain things to me that I did not understand. 4 3.52 0.62
My teachers give me advices on how I can learn better. 3 3.35 0.68
My teachers know what I am already good at. 3 3.30 0.60
My teachers notice when I need support. 3 3.08 0.73

Notes. N = 860; SD = standard deviation; scale: 1 = totally disagree, 2 = somewhat disagree, 3 = somewhat agree, 4 = totally agree; McDonald’s ω = .76.
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